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A discrete ordinate method is developed for the solution of linear differential equations. The 
method is based on a Gaussian quadrature procedure and is an extension of a discrete 
ordinate method used for the solution of integral equations. The present method is based on a 
representation of the derivative operator in a discrete ordinate basis. The method is applied to 
a number of problems with known solutions and is found to work extremely well. 

1. INTRODUCTION 

In a recent paper, Shizgal [ 1 ] introduced a new Gaussian quadrature procedure in 
the solution of the Boltzmann equation of kinetic theory. The method was based on 
the replacement of the integration in the integral operator by a sum involving the 
points and weights of the quadrature procedure. Many problems in kinetic theory 
have been treated efficiently with this and similar discrete ordinate methods. These 
include the calculation of the eigenvalues of the Boltzmann collision operator (2, 3 ], 
radiative transfer problems (4, 5 ] hot atom reaction rates 161, and non Maxwellian 
effects in planetary atmospheres [ 71. In addition discrete ordinate methods have been 
used in neutron transport problems [8]. 

The authors are presently involved in the solution of the Boltzmann equation which 
has the form 19 1, 

where 

J[JJ=) K(v,v’)f(v’,r,t)dv’-f(v,r,t)j K(v’,v)dv’ (2) 

is the integral collision operator and K(v, v’) is the scattering kernel 191. The quantity 
F in Eq. (1) is the external force per unit mass which may include electric, magnetic, 
and gravitational forces. Work is in progress on the solution of the Boltzmann 
equation with regard to an extension of the earlier work on the escape of planetary 
atmospheres [ 71. The initial objective was to develop a discrete ordinate method that 
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would be applicable to both the integral and differential portions of the Boltzmann 
equation. The purpose of the present paper is to describe such a method and to 
illustrate its utility in the application to a number of solved problems. 

The application of the discrete ordinate method to the integral operator in Eq. (1) 
has been discussed elsewhere [l-3]. The action of the spherical component of the 
kernel in Eq. (2) on some functionf(v’), that is, 

g(u) = Jorn k,(u, ?I’) u’y-(II’) du’ (3) 

can be approximated by 

g(Xi) 2 ?] kO(Xi 3 Xj) wjxj?f(xj), 

j=O 
(4) 

where (xi) and {wi) are a set of quadrature points and weights ( 11. This may be 
written as a matrix equation. 

gr K, . f, (5) 

where g and f are N dimensional vectors whose elements are g(xi), andf(x,), respec- 
tively. The N x N matrix K, is the discrete ordinate representation of the kernel in 
Eq. (3). 

An arbitrary differential equation may be written as 

g=Lf, (6) 

where 

The main objective of the present paper is to treat this operator in a manner 
analogous to the numerical treatment of the integral collision operator in Eqs. (4) and 
(5). We are interested in a discrete ordinate approximation for L such that, Eq. (6) 
can be written in the form 

ggL.f, (8) 

where g and f are as defined previously and L is the N dimensional discrete ordinate 
representation of the differential operator. 

Once this approximate representation of the operator L has been found, a 
differential equation may be solved by inverting the matrix L in Eq. (8), subject to 
appropriate boundary conditions. Similarly the eigenvalues of the differential operator 
may be approximated by the eigenvalues of the matrix L. The method for finding the 
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matrix approximation of L with an arbitrary set of quadrature points and weights is 
discussed in the next section. The subsequent section describes several applications of 
the new method. 

2. DISCRETE ORDINATE METHOD 

The discrete ordinate representation of the differential operator, Eq. (7), is based on 
the transformation between the representation of a function in a polynomial basis set 
and the corresponding discrete ordinate representation. We develop the discrete 
ordinate representation of the derivative operator, d/dx, from its finite matrix 
representation in some polynomial basis. The representation of the differential 
operator, L in Eq. (7) is then easily written. We begin the development with a series 
of definitions. 

2.1. Definitions 
A set of polynomials R,(x), orthonormal with respect to the weight function w(x) 

on the interval [a, b 1, form a complete basis of the L2 la, b] Hilbert space [ 10 I. If 
R,(x) is a polynomial of degree n, then the set is fully specified and unique 1 lo]. The 
first N of these polynomials form a subspace of this Hilbert space which is 
isomorphic with the R” Euclidean space. The elements of the basis vectors of this 
polynomial basis, referred to as the e-basis, are defined by, 

ej”’ = ‘b w(x) R,(x) R,(x) dx = a,,, , J a 
(9) 

where ej”’ is the ith element of the n th basis vector. The e basis will be referred to as 
the polynomial basis. 

Let SsM be the set of all polynomials of degree less than or equal to M. The inner 
product between two vectors in this subspace will be denoted by the dot product 
between the two vectors. It will be assumed throughout the paper that all vectors and 
operators are in the N dimensional space R”. 

Since {R,(x)} is a set of orthonormal polynomials, it is possible to find a set of 
weights ( nli. i = 0, 1, 2, . . . . N - 1 ) such that 

V-I 

provided g E S*“- ’ and (x,~) are the roots of RN(x) [ 111. With the use of Eq. (lo), it 
is possible to define a unitary transformation which will allow a change to the 
discrete ordinate basis of the RN Euclidean space. 

The matrix T, whose elements are given by 

T, = R i(x,i) fi (11) 
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is a unitary matrix, that is, 

(T . T’)ii= “ Ri(~k) Rj(Xk)Wk = 6,, 

k=O 
(12) 

since RiRj E S2N-2 and Ri is orthonormal to R,. Hence Tt is a matrix that defines a 
new basis referred to as the f basis. The nth vector, f(“), of this basis, satisfies 

f(n) . e’m’ _ 
- \/w,U&7)~ (‘3) 

where the rhs of Eq. (13) is (7’+ ),, = T,,,, . 
This new basis will be referred to as the discrete ordinate (DO) basis. An arbitrary 

function g E SN-’ may be represented exactly in this basis by a vector go’ with the 
elements 

gk - 
(f) = \’ T,t,$“, 

i=O 

where 

gje’ = j” w(x) R i(x) g(x) dx. 
(1 

With Eq. (10) and the definition Eq. (1 l), we find that 

N-l N-l 

gk 
m = K7 

‘7 
ire ,To 

TLiTij fi g(Xj> = \/wk dxk), 

(14a) 

(14b) 

where Eq. (12) has been used to perform the sum over i. This result is the working 
definition of the representation of functions in the DO basis. 

Now it is only necessary to express arbitrary differential operators in this basis so 
that differential equations of the form of Eq. (6) can be solved. To do this we will 
first find the polynomial representation of the derivative operator and then transform 
it to DO representation. The matrix elements of the derivative operator in the 
polynomial basis are given by 

0;;’ = 1” w(x) Ri(x) R;(x) dx. 
a 

(15) 

This matrix is upper triangular since for i >j, Ri(x) is orthogonal to R;(x). The 
representation of this operator in the DO basis is given by 

D’f’ = T+ . Dfe) . T. (16) 

If g E SN-’ then the differentiation operation in the discrete ordinate basis is given 
simply by, 

g J(f) = D’f’ . g’f’ (17) 
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The approximate DO representation of the functions H(x) in the differential 
operator L of Eq. (7) considered as multiplicative operators, is given by the diagonal 
matrix with the elements, 

ffjp = H(x,)6,, (18) 

where the rn index has been omitted. 
The discrete ordinate differential approximation of the operator in Eq. (7) is now 

written in the form, 

L’f’ z \‘ [H”“’ Im . [D(f)]“‘, (19) 
m 

where IDo’]” is the unit matrix. This is not an exact representation of the differential 
operator in the DO basis. However, if all the H,(x) functions in Eq. (7) are 
polynomials of degree m + 1 or less, then it may be shown that the DO represen- 
tation is equivalent to the truncated polynomial representation of the same order. 

2.2. Discrete Ordinate Representation of Differential Operators 

The basic procedure involves the determination 0;;’ defined by Eq. (15) and 
performing the transformation given by Eq. (16). A polynomial basis set must be 
chosen and this choice depends on the problem to be considered. The methods 
developed here are applicable to any basis set although the present paper considers 
the Legendre polynomials P,(x), orthogonal on the interval [- 1, 11 with unit weight 
function and the new speed polynomials B,(x) [ 1 1, orthogonal on 10, co 1 with the 
weight function w(x) = xze-x*. 

The matrix elements D$“, may be readily evaluated from Eq. (15) with an 
integration by parts, that is, 

D!!’ zz 0 
IJ ’ i>j, 

= W(X) Ri(X) Rj(X) If: - rb W(X) Ri(X) R,~(x) ~ dx, 
(20) 

i<j. 
‘a 

In the case of normalized Legendre polynomials P,(x), this reduces to 

D:i = (J(2m + 1)(2n + l), m > n, m + n odd 

= 0, otherwise. (21) 

This polynomial representation was transformed into the DO representation using the 
appropriately defined transformation operator. Many of the applications in the next 
section will be based on the differential operator defined with the Gauss-Legendre 
quadrature. 

5Sl/S5/2-IO 
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For the speed polynomials it was convenient to proceed in an alternate way. The 
B, polynomials may be generated by the three term recurrence relation 111, 

vzBn+,(x)=(x- 4 B,(x) - vz Bn- I(X), (22) 

where the calculation of 01 and /? is discussed in [ 11. The matrix representative of the 
derivative operator in the polynomial basis may be found by the use of the confluent 
form of the Christoffel-Darboux identity [ 111, 

N-l 

\‘ 
k50 

(BkW2 = LK PXX) BP!- I(X) - B,(x) BA-,(x)1* (23) 

If Eq. (23) is multiplied by x2eAx* and integrated over [O, co ] we find that, 

D(e) 
npl,fl =nlvK. (24) 

Similarly the multiplication of Eq. (23) by x3ePX2 and the use of the recurrence 
relation Eq. (22), followed by integration over x, yields, 

This equation may be rearranged with the use of Eq. (24) to give 

n-1 
D(e) 

n-2,n = T’ 

k:O 
ak-nanel 

1 
(26) 

The remaining matrix elements may be found by multiplication of the recurrence 
relation (22) by x2eeX2 B;(x) followed by integration. This yields 

D(e) 
k-1,n = Bk(x)x3epX2B;(x)dx-/?k+,Djf~,,n-akD~)n /a. 

I 
(27) 

The integral in Eq. (27) may be evaluated by integration by parts and hence rewritten 
as 

provided k + 2 < II. Thus all of the nonzero matrix elements are evaluated by 
recursion. The method outlined above is applicable for weight functions of the form 
xPe-XZ as used in [ 11. As before this operator is transformed into the corresponding 
DO basis. The DO representation of the differential operator has now been generated 
in the Gauss-Legendre quadrature and the B, quadrature. 

As an illustration of the usefulness of this representation of the derivative operator, 
we consider the differentiation of the oscillatory function f(x) = 
sin[ 3(sinh(x) + (1 + x)*)1, chosen arbitrarily. Since we are considering the interval 
[O, 11, Gauss-Legendre quadrature points are employed. The second derivative of this 
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TABLE I 

Comparison of Numerical Differentiation 

319 

x f(x) f"(x) a Eb f"(x) c Eb 

0.00155326 0.12726007 - 16.28527098 0.76E-12 - 16.28527098 
0.00816594 0.06784673 - 11.56632236 -0.58E-09 - 11.56632237 
0.01998907 -0.03950136 - 2.76935530 0.60E-10 - 2.76935532 
0.03689998 -0.19339086 10.45676067 -O.l5E-10 10.45676083 

0.05871973 -0.38695791 28.18794863 0.51E-10 28.18794863 
0.08521712 -0.60315987 49.70003239 -0.38E-11 49.70003239 
0.11611128 -0.81028462 72.78496383 0.33E-11 72.78496379 

0.15107475 -0.96035612 93.10145744 -0.24E-11 93.10145736 
0.18973691 -0.99431669 103.99807283 O.l9E-11 103.99807280 
0.23168793 -0.85766993 97.48245360 -0.21E-11 97.48245353 
0.27648312 -0.52685871 66.97435252 0.32E-11 66.97435250 
0.32364764 -0.03906356 11.79600346 -0.26E-11 11.79600335 

0.37268154 0.49138963 - 58.16487063 O.l7E-11 - 58.16487070 
0.42306504 0.89100469 -120.97517431 -0,56E-12 -120.97517431 

0.47426408 0.98977657 -148.12752992 -0.548-12 -148.12752990 
0.52573592 0.71055940 -117.80989495 -0.89E-13 -117.80989491 

0.57693496 0.13575281 - 30.60966056 0.36E-13 - 30.60966045 
0.62731846 -0.50342574 83.12313611 -0.24E-12 83.12313602 
0.67635236 -0.92948994 173.24524007 0.16E-11 173.24524008 

0.72351688 -0.96080670 194.99796879 -O.l3E-11 194.99796866 
0.76831207 -0.60287125 134.26194964 0.22E-11 134.26194954 
0.81026309 -0.02957128 15.26821907 -0.24E-11 15.26821888 

0.84892525 0.52532054 -114.48439921 O.l2E-11 -114.48439945 
0.88388872 0.88728264 -210.48866829 0.94E-12 -210.48866828 
0.91478288 0.99998511 -250.76022160 -0.60E-11 -250.76022161 

0.94128027 0.90969816 -238.99727696 O.l2E-10 -238.99727675 
0.96310002 0.72002361 -194.79292701 -0.80E-11 -194.79292677 
0.98001093 0.49067637 -140.83294025 -0.42E-10 -140.83293976 

0.99183406 0.31251156 - 94.62706369 -0.27E-09 - 94.62706375 
0.99844674 0.20667729 - 66.36410768 -0.22C-08 - 66.36410798 

0.60E-09 

-O.l7E-07 
-O.l6E-07 

O.lbE-06 

0.78E-09 
0.28E-08 

-0.41E-07 

-0.86E-07 
-0.30E-07 
-0.66E-07 
-0.22E-07 
-O.llE-06 

-0.74E-07 
-O.l6E-08 

0.20E-07 
0.43E-07 

O.llE-06 
-0.89E-07 

0.32E-08 

-O.l3E-06 
-0.96E-07 
-O.l8E-06 

-0.23E-06 
0.88E-08 

-0.20E-08 

0.21E-06 
0.248-06 
0.49E-06 

-0.61E-07 
-0.30E-06 

a Discrete ordinate method based on a Gauss-Legendre quadrature procedure, N = 30. 
* Error, E = analytic-numerical. 
’ Finite difference method. Eq. (29). 

function was determined numerically by repeated application of Eq. (17) with DC/” 
constructed as described above. For comparison, the fourth order finite difference 
approximation of the second derivative, that is, 

f”(x) = [-f(x - 2h) + 16f(x - h) - 3Of(x) + 16f(x + h) -f(x - 2h)1/12h2 + U(h4) 

(29) 

was also calculated. The result of this comparison with N = 30 and h = 0.0001 
together with f(x) are shown in Table I. To generate a matrix derivative operator 
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based on finite differences that even approached the accuracy of the DO operator, it 
would be necessary to use a matrix of order 300 times that of the DO matrix. In the 
next section the solution of some model problems is presented. 

3. APPLICATIONS 

The linear equations to be considered in this paper are of the form 

Lu =f (30) 

together with appropriate boundary conditions. Table II lists the equations to be 
considered, the boundary conditions and the analytic solution. In the first three 
examples, a linear variable change, x’ = mx + b was employed to change the domain 
from x from [0, I] to [- 1, l] so that Gauss-Legendre quadrature points can be 
employed. For example D in Table II, the quadrature rule of [ 1 ] is employed, without 
a variable change. All the operators in the equations in Table II are approximated 
with the discrete ordinate representation and it is understood that L, = Lf’ and 
similarly for the other quantities. Thus Eq. (30) may be rewritten as 

N-l 

x LijU(Xj) fi =f(xi> fi* 
j=O 

(31) 

The linear boundary conditions in Table II may be studied in their most general form 
for second order problems, as given by 

I',,+) + Yu$'(~) -t w@) + YuU'(b)= YSk, k= 1,2, (32) 

where yik are arbitrary constants. If the quadrature points are scaled as discussed 
previously so that the first and last quadrature points can be made to coincide with a 
and b, respectively, then Eq. (32) may be written as 

N-l 

2 [(Ylk'Oj + Y2kDOj)/A + b3kSh'-1.j + Y4kDN-1,j)/GI 6; U(Xj)=l'Sk~ 
j=O k = 1, 2. (33) 

Equations (31) and (33) completely specify the second order differential equations. 
However, there are N + 2 equations and N unknowns, and the problem would appear 
to be over specified. However, if the first and last equations of Eq. (31) are replaced 
by Eq. (33), then we have N equations in N unknowns and the problem is well 
defined. It is possible to calculate the solution at points other than the quadrature 
points by transforming the solution vector into the polynomial basis, that is, 

u@) = T . “(f). 

The specific examples in Table II will now be considered. 

(34) 
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3.1. Periodic Boundary Value Problem 

Example A was devised to illustrate the ease of application of the present method. 
The solution of this equation by integrating from one end point to the other is 
difficult with periodic boundary conditions. Also, there is a regular singular point at 
x = 3-/r/4. 

The solution with the discrete ordinate method with N = 20 was obtained as 
described earlier. The comparison with the analytic solution at intervals of n/20 is 
shown in Table III and the agreement is excellent. If the functions multiplying the 
derivatives in L are changed, that is the functions H,(x), there is essentially no 
modification to the basic method involved. This is one of the major features of the 
present method. 

3.2. Integro-Differential Problem 

As mentioned in the Introduction, the authors have developed this method with the 
objective of applying it to transport problems which involve the solution of the 

TABLE III 

Example A 

X Numerical a Analytic 

0.0 -0.0000000002 0.0 
0.1570796327 0.5363718750 0.5363718752 

0.3141592654 1.1192784358 1.1192784360 

0.4712388980 1.6925100396 1.6925100397 

0.6283185307 2.2057416961 2.2057416962 
0.7853981634 2.6170740748 2.6170740749 

0.9424777961 2.8950359762 2.8950359762 

1.0995574288 3.0199688944 3.0199688944 

1.2566370614 2.9847424960 2.9847424960 

1.4137166941 2.7947797708 2.7947797708 

1.5707963268 2.4674011003 2.4674011003 

1.7278759595 2.0305263600 2.0305263599 

1.8849555922 1.5208022620 1.5208022619 
2.0420352248 0.9812473753 0.9812473758 

2.1991148575 0.4585286529 0.4585286528 
2.3561944902 -0 .oooooooooo 0.0000000000 

2.5132741229 -0.3493551641 -0.3493551641 

2.6703537556 -0.5499298481 -0.5499298480 

2.8274333882 -0.5703008484 -0.5703008482 

2.9845130209 -0.3896969784 -0.3896969782 

3.1415926536 -0.0000000002 0.0 

“N=20. 
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integro-differential Boltzmann equation. With this in mind, we considered the 
following problem defined by, 

dy -’ -- 
I dx x0 

ecXeT)y(r) dr = sin x 

subject to the initial condition y(x,,) = 1. 
In the discrete space, Eq. (35) may be approximated by 

N-l 

h‘ 
,r(l 

[Dri - K,,i] &ii y(X,,) = Sin(Xi) fii, 

where 

(35) 

(36) 

and xi and wi are the Gauss-Legendre quadrature points and weights, respectively. 
The set of equations (36) was solved together with the initial condition and the 

results for N = 20 are shown in Table IV. The agreement with the exact solution is 
good although somewhat lower than for the other examples studied. 

TABLE IV 

Example B 

X Analytic Numerical a ErrOr 

0.003435 
0.018014 
0.043882 

0.080441 
0.126834 
0.181973 

0.244566 
0.313146 
0.386107 

0.461736 
0.538263 
0.613892 

0.686853 
0.755433 

0.818026 
0.873165 
0.919558 
0.956117 
0.981985 
0.996564 

1.0000000 1.0000000 
1.0127462 1.0127464 
1.0353092 1.0353097 
1.0671042 1.0671051 

1.1073666 1.1073682 
1.1552360 1.1552383 

1.2098367 1.2098399 
1.2703411 1.2703454 
1.3359967 1.3360022 

1.4061019 1.4061088 
1.4799250 1.4799333 
1.5565761 1.5565860 

1.6348555 1.6348671 
1.7131174 1.7131307 
1.7891927 1.7892076 
1.8604100 1.86042h3 
1.9237369 1.9237546 
1.9760371 1.9760559 

2.0144095 2.0144291 
2.0365562 2.0365762 

O.l7E-06 
0.49E-06 
0.94E-06 

O.l6E-05 
0.23E-05 

0.32E-05 
0.43E-05 
0.55E-05 

0.69E-05 
O.R3E-05 

0.99E-05 
O.lZE-04 

O.l3E-04 
O.l5E-04 
O.l6E-04 
O.lBE-04 
O.l9E-04 
0.20E-04 
O.ZOE-04 

“N=20. 
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TABLE V 

Example C 

n 

I 10.8696044015 10.8696044011 
2 40.4784175928 40.4784 176044 
3 89.8264365475 89.8264396098 
4 158.9137074948 158.9136704174 
5 247.7401505683 247.7401100272 
6 356.3178629772 356.3057584392 
7 484.5 163020440 484.6106156534 
8 632.9205561547 632.6546816697 
9 797.3395103782 800.4379564882 

10 966.1809546573 987.9604401989 

1 a Anh 

“N= 15. 
b/l, = (nn)’ + 1. 

3.3. A Sturm-Liouville Problem 

A Sturm-Liouville eigenvalue problem of the form 

1 d -- 
x dx xE 1Lel (38) 

with boundary conditions y( 1) = y(e) = 0, where e is the base of natural logarithms, 
was also considered. 

In the discrete ordinate approximation the eigenvalues are calculated by first deter- 
mining the matrix representation of the lhs of Eq. (38) denoted by L. The boundary 
conditions are imposed by removing the first and last columns of the matrix L since 
these elements are multiplied by the first and last elements of the eigenvector, which 
are zero. The first and last rows of L define the equations for y(x,,) and y(xN- ,), 
hence these rows should be removed. The resulting matrix of dimension (N - 2) X 

(N - 2) was diagonalized numerically. A comparison of these eigenvalues with the 
exact eigenvalues is shown in Table V. The lower order eigenvalues have converged 
remarkably well and even some of the higher eigenvalues are determined with 
reasonable accuracy considering that a very small number of points (N = 15) was 
used. The higher order oscillatory eigenfunctions require more points for their 
accurate calculation. 

3.4. Eigenvalues of the Fokker-Planck Operator 

In electron thermalization, the Fokker-Planck equation gives the change in the 
electron distribution function as a result of collisions with the moderator [ 131. For a 
hard sphere cross section the Fokker-Planck operator is given by 

L,,=x$J + (3 - 2x2) g, (39) 
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TABLE VI 

Example D 

n 4!” kb 

1 - 4.683395 16 - 4.68339516 
2 -10.11251880 -10.11251880 
3 -16.42968416 -16.42968416 
4 -23.57185079 -23.57 185079 
5 -3 1.46625300 -31.46625300 
6 -40.05237885 -40.05237855 
1 -49.28102526 -49.28101338 
8 -59.11193192 -59.11162283 
9 -69.5 1550758 -69.5 1024024 

10 -80.50507473 -80.44193669 

’ Discrete ordinate method, N = 20. 
b Polynomial method, N = 90 [ 12 1. 

where x is the reduced velocity of the electron and x2emx21i/(x) is the electron 
distribution function. The eigenvalues of the operator have previously been found 
I12 J by diagonalization of the truncated operator in the B polynomial representation. 

The diagonalization of this operator in DO space, based on the quadrature derived 
from the B, polynomials is carried out as in the previous example with N = 20. In 
this case it is not necessary to impose any boundary conditions since the weight 
function, x2eeX2 ensures that the distribution function will approach zero as x -+ 0 
and x --) co. Table VI gives the first 20 numerical and exact eigenvalues and these 
eigenvalues are identical to the ones obtained by direct diagonalization of the matrix 
in the B, representation. As discussed before the DO and polynomial representations 
will be identical if the polynomials multiplying the derivative operators are 
polynomials of small enough degree. 

4. SUMMARY 

A discrete ordinate method for the solution of linear differential equations has been 
developed. The main advantages include a high order algorithm in the numerical 
calculation of derivatives. Also, boundary conditions are imposed in a natural and 
simple fashion. In the applications discussed in this paper, no more than 20 discrete 
points were employed in the solution of boundary value and eigenvalue problems. 

In instances where a differential equation can be written as a set of coupled first 
order differential equations, the usual procedure is to employ a direct numerical 
integration. For this purpose there are a number of algorithms to choose from [ 141. 
A detailed comparison of these methods has recently appeared [ 15, 16). Although we 
have not compared the present results with results obtained by a direct numerical 
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integration, it is anticipated that the DO method will prove efficient for a variety of 
applied problems owing to the small number of quadrature points required to obtain 
accurate solutions. The present method can easily incorporate two point boundary 
value problems (Example A) whereas direct numerical integration methods are more 
involved. 

Green’s function methods [ 171 which involve the calculation of the inverse of the 
operator can also be used. As with the present method, boundary conditions are 
incorporated into Green’s function. However, Green’s functions are often not easily 
determined and their use is sometimes made difficult by the presence of singularities. 

Finite difference methods are also often used in the solution of differential 
equations [ 181, and in neutron transport [ 15, 191. The present DO derivative matrix 
was shown to be superior to finite difference approximations in the calculation of 
derivatives. This suggests that it may be possible to represent differential operators 
more accurately with a DO approximation than with a finite difference approx- 
imation. 

The DO approximation also has the advantage of being, like the collocation 
method [ 161, a nonlocal method. That is the solution is known at all points and not 
just at the quadrature points. The collocation method is similar to the present method 
in that the solution is found at a set of quadrature points. The collocation method 
differs from the present method in that it generates a set of nonorthogonal functions, 
satisfying the boundary condition, which are superimposed to yield a solution. The 
present method requires the superposition of a set of othogonal functions which 
satisfy the boundary conditions. 

Since the DO method is an approximation to polynomial methods, it is basis 
dependent. However, it has two advantages over using polynomials. First, .once the 
derivative operator has been generated the approximation of any linear differential 
operator is easily and accurately computed. Second, it is a very simple matter to 
impose boundary conditions ‘in this representation. 

Advantages of this present method include high accuracy with relatively few 
quadrature points, a solution defined at all points of the domain and the ease with 
which boundary conditions may be imposed. A wide variety of problems may be 
treated with discrete ordinates. 
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